Kumpulan contoh tugas makalah dan pembahasan lainnya

Tuesday 2 June 2015

Makalah tentang radar dan gps


KATA PENGANTAR 

Puji dan Syukur kami panjatkan ke Hadirat Tuhan Yang Maha Esa, karena berkat limpahan Rahmat dan Karunia-nya sehingga kami dapat menyusun makalah ini dengan baik dan tepat pada waktunya. Dalam makalah ini kami membahas mengenai Radar dan GPS

Makalah ini dibuat dengan berbagai observasi dan beberapa bantuan dari berbagai pihak untuk membantu menyelesaikan tantangan dan hambatan selama mengerjakan makalah ini. Oleh karena itu, kami mengucapkan terima kasih yang sebesar-besarnya kepada semua pihak yang telah membantu dalam penyusunan makalah ini. 

Kami menyadari bahwa masih banyak kekurangan yang mendasar pada makalah ini. Oleh karena itu kami mengundang pembaca untuk memberikan saran serta kritik yang dapat membangun kami. Kritik konstruktif dari pembaca sangat kami harapkan untuk penyempurnaan makalah selanjutnya. 

Akhir kata semoga makalah ini dapat memberikan manfaat bagi kita sekalian. 




                                                                                                Banjar, 10 April 2014



                                                                                                Penulis,


BAB 1

PENDAHULUAN


1.1  Latar Belakang
Seiring dengan berkembangnya ilmu pengetahuan dan teknologi, maka berkembang pula alat-alat canggih yang dapat membantu kita dalam mengerti perkembangan tersebut. Sebagai penduduk suatu negara, kita harus dapat mengikuti perkembangan yang terjadi di negara kita maupun di negara lain. Sehingga kita tidak akan ketinggalan oleh negara lain.
Salah satu alat yang dapat kita sebut canggih adalah GPS, yaitu Global Positioning System. Dalam makalah ini kami membahas mengenai apa itu GPS dan apa manfaat GPS bagi kehidupan kita. Seorang ahli fisika Inggris bernama James Clerk Maxwell mengembangkan dasar-dasar teori tentang elektromagnetik pada tahun 1865. Setahun  kemudian, seorang ahli fisika asal Jerman bernama Heinrich Rudolf Hertz berhasil membuktikan teori Maxwell mengenai gelombang elektromagnetik dengan menemukan gelombang elektromagnetik itu sendiri.
Pendeteksian keberadaan suatu benda dengan menggunakan gelombang  elektromagnetik pertama kali diterapkan oleh Christian Hülsmeyer pada tahun 1904. Bentuk nyata dari pendeteksian itu dilakukan dengan memperlihatkan kebolehan gelombang elektromagnetik dalam mendeteksi kehadiran suatu kapal pada cuaca yang berkabut tebal. Namun di kala itu, pendeteksian belum sampai pada kemampuan mengetahui jarak kapal tersebut.
Di tahun 1921, Albert Wallace Hull menemukan magnetron sebagai tabung pemancar sinyal/transmitter yang efisien. Kemudian transmitter berhasil ditempatkan pada kapal kayu dan pesawat terbang untuk pertama kalinya secara berturut-turut oleh A. H. Taylor dan L. C. Young di tahun 1922 dan L. A. Hyland dari Laboratorium Riset kelautan Amerika Serikat di tahun 1930.
Istilah GPS sendiri pertama kali digunakan pada tahun 1941, menggantikan istilah dari singkatan Inggris RDF (Radio Directon Finding), namun perkembangan GPS itu sendiri sudah mulai banyak dikembangkan sebelum Perang Dunia II oleh ilmuwan dari Amerika, Jerman, Prancis dan Inggris. Dari sekian banyak ilmuwan, yang paling berperan penting dalam pengembangan GPS adalah Robert Watson-Watt asal Skotlandia, yang mulai melakukan penelitiannya mengenai cikal bakal GPS pada tahun 1915. Di tahun 1920-an, ia bergabung dengan bagian radio National Physical Laboratory. Di tempat ini, ia mempelajari dan mengembangkan peralatan navigasi dan juga menara radio. Watson-Watt menjadi salah satu orang yang ditunjuk dan diberikan kebebasan penuh oleh Kementrian Udara dan Kementrian Produksi Pesawat Terbang untuk mengembangkan GPS. Watson-Watt kemudian menciptakan GPS yang dapat mendeteksi pesawat terbang yang sedang mendekat dari jarak 40 mil (sekitar 64 km). Dua tahun berikutnya, Inggris memiliki jaringan stasiun GPS yang berfungsi untuk melindungi pantainya.
Pada awalnya, GPS memiliki kekurangan, yakni gelombang elektromagnetik yang dipancarkannya terpancar di dalam gelombang yang tidak terputus-putus. Hal ini menyebabkan GPS mampu mendeteksi kehadiran suatu benda, namun tidak pada lokasi yang tepat. Terobosan pun akhirnya terjadi di tahun 1936 dengan pengembangan GPS berdenyut (pulsed). Dengan GPS ini, sinyal diputus secara berirama sehingga memungkinkan untuk mengukur antara gema untuk mengetahui kecepatan dan arah yang tepat mengenai target.

1.2  Tujuan
Tujuan pembuatan makalah mengenai GPS ini, adalah untuk mendapatkan informasi mengenai GPS. Diharapkan dengan adanya makalah ini, pembaca dapat lebih mengerti mengenai GPS dengan lebih jelas.




BAB 2
LANDASAN TEORI

2.1.   Jenis GPS
GPS Berdasarkan bentuk gelombang dibagi menjadi  :
Continuous Wave/CW (Gelombang Berkesinambungan), merupakan GPS yang menggunakan transmitter dan antena penerima (receive antenna) secara terpisah, di mana GPS ini terus menerus memancarkan gelombang elektromagnetik. GPS CW yang tidak termodulasi dapat mengukur kecepatan radial target serta posisi sudut target secara akurat. GPS CW yang tidak termodulasi biasanya digunakan untuk mengetahui kecepatan target dan menjadi pemandu rudal (missile guidance).
Pulsed GPSs/PR (GPS Berdenyut), merupakan GPS yang gelombang elektromagnetiknya diputus secara berirama. Frekuensi denyut GPS (Pulse Repetition Frequency/PRF) dapat diklasifikasikan menjadi 3 bagian, yaitu PRF high, PRF medium dan PRF low.

2.1.1. Doppler GPS
Doppler GPS merupakan jenis GPS yang mengukur kecepatan radial dari sebuah objek yang masuk ke dalam daerah tangkapan GPS dengan menggunakan Efek Doppler. Hal ini dilakukan dengan memancarkan sinyal microwave (gelombang mikro) ke objek lalu menangkap refleksinya, dan kemudian dianalisis perubahannya. Doppler GPS merupakan jenis GPS yang sangat akurat dalam mengukur kecepatan radial. Contoh Doppler GPS adalah Weather GPS yang digunakan untuk mendeteksi cuaca.

2.1.2 Bistatic GPS
Bistatic GPS merupakan suatu jenis sistem GPS yang komponennya terdiri dari pemancar sinyal (transmitter) dan penerima sinyal (receiver), di mana kedua komponen tersebut terpisah. Kedua komponen itu dipisahkan oleh suatu jarak yang dapat dibandingkan dengan jarak target/objek. Objek dapat dideteksi berdasarkan sinyal yang dipantulkan oleh objek tersebut ke pusat antena. Contoh Bistatic GPS adalah Passive GPS. Passive GPS adalah sistem GPS yang mendeteksi dan melacak objek dengan proses refleksi dari sumber non-kooperatif pencahayaan di lingkungan, seperti penyiaran komersial dan sinyal komunikasi.

2.2 Sistem GPS
Ada tiga komponen utama yang tersusun di dalam sistem GPS, yaitu antena, transmitter (pemancar sinyal) dan receiver (penerima sinyal)

2.4.1 Antena
Antena yang terletak pada GPS merupakan suatu antena reflektor berbentuk piring parabola yang menyebarkan energi elektromagnetik dari titik fokusnya dan dipantulkan melalui permukaan yang berbentuk parabola. Antena GPS memiliki du akutub (dwikutub). Input sinyal yang masuk dijabarkan dalam bentuk phased-array (bertingkat atau bertahap). Ini merupakan sebaran unsur-unsur objek yang tertangkap antena dan kemudian diteruskan ke pusat sistem GPS.
2.4.2 Pemancar sinyal (transmitter)
Pada sistem GPS, pemancar sinyal (transmitter) berfungsi untuk memancarkan gelombang elektromagnetik melalui reflektor antena. Hal ini dilakukan agar sinyal objek yang berada didaerah tangkapan GPS dapat dikenali. Pada umumnya, transmitter memiliki bandwidth dengan kapasitas yang besar. Transmitter juga memiliki tenaga yang cukup kuat, efisien, bisa dipercaya, ukurannya tidak terlalu besar dan tidak terlalu berat, serta mudah dalam hal perawatannya.
2.4.3 Penerima sinyal (receiver)
Pada sistem GPS, penerima sinyal (receiver) berfungsi sebagai penerima kembali pantulan gelombang elektromagnetik dari sinyal objek yang tertangkap oleh GPS melalui reflektor antena. Pada umumnya, receiver memiliki kemampuan untuk menyaring sinyal yang diterimanya agar sesuai dengan pendeteksian yang diinginkan, dapat memperkuat sinyal objek yang lemah dan meneruskan sinyal objek tersebut ke pemroses data dan sinyal (signal and data processor), dan kemudian menampilkan gambarnya di layar monitor (display).

Selain tiga komponen di atas, sistem GPS juga terdiri dari beberapa komponen pendukung lainnya, yaitu
a.            Waveguide, berfungsi sebagai penghubung antara antena dan transmitter.
b.           Duplexer, berfungsi sebagai tempat pertukaran atau peralihan antara antena dan penerima atau pemancar sinyal ketika antena digunakan dalam kedua situati tersebut.
c.            Software, merupakan suatu bagian elektronik yang berfungsi mengontrol kerja seluruh perangkat dan antena ketika melakukan tugasnya masing-masing.



BAB 3
PEMBAHASAN

3.1  Pengertian
Global Positioning System atau yang biasa disingkat dengan GPS  adalah alat navigasi elektronik yang menerima informasi dari 4 - 12 satelit sehingga GPS bisa memperhitungkan posisi di mana kita berada di Bumi. Satelit GPS tidak mentransmisikan informasi posisi kita, yang ditransmisikan satelit adalah posisi satelit dan jarak penerima GPS kita dari satelit. Informasi ini diolah alat penerima GPS kita dan hasilnya ditampilkan kepada kita.
GPS sebenarnya adalah proyek Departemen Pertahanan Amerika Serikat (AS) yang memberinya nama resmi NAVSTAR (NAVigation Satellite Timing And Ranging). Bagian utama dari sistem GPS adalah 24 satelit yang mengorbit Bumi di ketinggian 20.200 kilometer. Orbit satelit dirancang sehingga setiap titik di Bumi dapat melihat paling sedikit empat satelit pada setiap saat
Tiap satelit mengitari bumi kira-kira sekali dalam 12 jam dengan kecepatan sekitar 11.000 kilometer per jam. Satelit GPS mempunyai panel-panel pengumpul tenaga Matahari untuk membangkitkan energi listrik yang diperlukannya. Selain itu juga ada baterai yang menyimpan tenaga listrik dan mempergunakannya saat satelit tidak memperoleh sinar Matahari.

3.2  Fungsi
1.      Menghitung jarak dan arah dari lokasi tempat kita berada.
2.      Satu unit GPS dapat menyimpan dalam memory lokasi di mana kita berada saat ini.
3.      Setiap lokasi dapat diberi nama atau nomor dan tanggal dan waktu.
4.      Mengingat lokasi yang pernah kita simpan.
5.      Mengarahkan kita dari satu lokasi ke lokasi lain dengan simbol berupa grafik.
6.      Menyimpan rute perjalanan kita dan mengantar kita kembali dengan rute yang sama.
7.      Berfungsi sebagai kompas yang dapat menuntun kita ke arah yang tepat.
8.      Dapat digunakan sebagai penunjuk arah di kapal, mobil dengan menggunakan daya sebesar 12 volt.
9.      Beberapa GPS dapat menunjukkan peta jalan-jalan utama, sungai-sungai.
10.  Beberapa GPS juga dapat menampilkan kekuatan baterai, posisi satelit, kekuatan sinyal.

3.3  Cara kerja
Satelit GPS pertama diluncurkan tahun 1978 dan konstelasi 24 satelit berhasil dilengkapi tahun 1994. Setelah itu satelit-satelit baru rutin diluncurkan untuk meng-upgrade satelit lama atau mengganti satelit yang rusak/tidak berfungsi lagi. Tiap satelit mentransmisikan data navigasi dalam sinyal CDMA (Code Division Multiple Access)-sama seperti jenis sinyal untuk telepon seluler CDMA. Sinyal CDMA menggunakan kode pada transmisinya sehingga penerima GPS tetap bisa mengenali sinyal navigasi GPS walaupun ada gangguan pada frekuensi yang sama. Frekuensi yang digunakan adalah L1 (1575,42 MHz) dan L2 (1227,6 MHz).
Kode CDMA disebut "pseudorandom" karena seakan-akan ("pseudo") tidak beraturan ("random"), padahal tidaklah demikian. Kode CDMA tiap satelit dipilih dengan saksama agar tidak mengganggu transmisi satelit lainnya. Jenis kode CDMA ini ada dua, yaitu C/A dan P(Y). Kedua kode ini ditransmisikan pada frekuensi L1, sementara di L2 hanya ada kode P(Y).
C/A (Coarse/Acquisition) penggunaannya terbuka untuk siapa saja. "Coarse" karena resolusi datanya lebih kasar/tidak sepresisi kode P(Y). Ini disebabkan modulasi kode yang lebih lambat, yaitu 1,023 MHz dibandingkan dengan P(Y) yang 10,23 MHz (bandingkan dengan cdma2000 yang 1,2288 MHz dan WCDMA (generasi penerus GSM) yang 3,84 MHz). Kata "Acquisition" adalah untuk akuisisi karena kode C/A yang sederhana lebih mudah dikenali dibandingkan dengan kode P(Y) sehingga untuk menangkap sinyal kode P(Y) lebih mudah setelah berhasil mengakuisisi satelit GPS dari sinyal C/A-nya. P(Y) berarti kode precision (presisi) yang dienkripsi dengan kode sandi Y. Modulasi kode yang sepuluh kali lebih cepat dibandingkan dengan kode C/A menyebabkan secara teoritis mampu memberikan presisi 10 kali lebih baik juga. Enkripsi digunakan agar data navigasinya tidak bisa digunakan orang tanpa seizin Departemen Pertahanan AS. Dengan mensinkronisasikan kode ini, alat penerima GPS dapat menghitung berapa waktu antara sinyal dikirim dari satelit dan diterima oleh alat penerima GPS. Data lain yang diperlukan juga ditumpangkan pada sinyal kode GPS, antara lain: koreksi posisi satelit, koreksi waktu satelit, dan informasi mengenai atmosfer yang dilalui sinyal dari satelit ke alat penerima.
Satelit-satelit ini dikontrol dari 5 stasiun Bumi, 4 stasiun Bumi yang bekerja otomatis dan satu stasiun Bumi pengontrol utama. Empat stasiun Bumi otomatis hanya berfungsi menerima data dari satelit GPS dan meneruskan informasi itu ke stasiun pengontrol utama. Stasiun pengontrol utama memberikan koreksi data navigasi ke satelit-satelit GPS.
Bagian akhir dari sistem GPS ini adalah alat penerima GPS yang akhirnya menghitung semua data, melakukan korelasi, dan menampilkan data posisi di layar display atau-kalau penerima GPS ini hanya aksesori tambahan di PDA (personal digital assistant) di layar PDA.
Informasi yang ditransmisikan dari satelit ke penerima GPS terdiri dari dua jenis. Yang pertama disebut "almanak", yaitu posisi dari semua satelit GPS. Jenis informasi kedua disebut "efemeris", yaitu koreksi data almanak. ’Almanak’ di-update kira-kira seminggu sekali, data ’eferemis’ biasanya di-update tiap setengah jam. Alat penerima GPS yang dinyalakan kembali setelah seharian dimatikan masih bisa menggunakan data almanak sebelumnya.
Untuk mengetahui posisi alat penerima, juga diperlukan informasi seberapa jauh alat penerima GPS dari satelit. Informasi ini didapat dari mensinkronisasikan timer di penerima dengan sinyal kode CDMA yang dikirim satelit GPS. Beda sinkronisasi dan fase sinyal digunakan untuk menghitung "pseudorange" (perhitungan jarak ke satelit GPS tanpa memperhitungkan perlambatan sinyal di atmosfer). Kecepatan sinyal di ruang hampa sama dengan kecepatan cahaya, yaitu 3 x 10-8 meter per detik. Sementara kode C/A yang 1,023 MHz artinya mengirimkan 1.023.000 pulsa setiap detiknya, atau setiap pulsa bila disinkronisasikan bisa memberikan jarak sampai akurasi 300 meter.
Kita juga bisa menghitung fase sinyal, sinyal itu sedang di posisi mana dari pulsa, sampai akurasi 1 persen. Jadi, akurasi terbaik yang bisa didapat dengan kode C/A kira-kira 3 meter. Untuk kode P(Y) yang mengirim pulsa 10 kali lebih banyak per detiknya, akurasinya bisa sampai 0,3 meter. Ini adalah angka teoretis, pada kenyataannya akurasi GPS kira-kira 9 meter untuk kode C/A.
Bayangkan ada satu bola dengan jari-jari sepanjang jarak satelit penerima GPS yang pusatnya di posisi satelit di ruang angkasa. Jika ada empat bola seperti itu, perpotongan permukaan bolanya adalah satu titik tempat lokasi alat penerima GPS.

3.4  Kelemahan
Rata-rata format peta Indonesia biasanya memakai datum dari Jakarta (0 derajat). Kebanyakan alat GPS tidak punya format ini sehingga kita harus memakai Latitude & Longitude. Di negara lain bisa membaca GPS kita dan langsung bisa melihat posisi kita di peta.
Langit langsung – Alat GPS perlu melihat langsung satelit untuk menerima informasi. Oleh karena itu, kita tidak bisa memakai GPS dalam rumah, atau terlalu dekat gedung-gedung yg tinggi, atau dlm lembah, atau di bawah hutan lebat.
Bahasa - Dengan GPS Garmin Kita bisa memilih bahasa yang dipakai. Tetapi bahasa yang tersedia hanya bahasa-bahasa Eropa belum bahasa Indonesia atau Melayu.
Baterai – Jika baterai habis, tidak ada cadangan bantuan navigasi. Biasanya alat GPS memakai 4 baterai AA dan cepat habis kalau dipakai terus-menerus (10 - 36 jam, tergantung model).
Elektronik - Sama seperti alat elekronik lain yang bisa rusak jika jatuh atau terkena air.
Walaupun alat GPS bisa menghitung ketinggian, biasanya kesalahan cukup besar dan kurang cocok untuk membantu sebagai informasi navigasi di daerah pegunungan.

3.5  Aplikasi
Aplikasi GPS sangat beragam dan tidak terbatas pada hal-hal yang berhubungan dengan penentuan posisi saja. Di udara, GPS digunakan sebagai salah satu alternatif peralatan navigasi pesawat terbang. Dibandingkan dengan peralatan navigasi lain, penerima GPS paling mudah digunakan karena langsung memberikan posisi pesawat sehingga sangat cepat menjadi populer. Dengan menggunakan beberapa penerima GPS, orientasi kemiringan pesawat juga bisa dihitung, GPS juga favorit digunakan untuk membimbing pesawat tanpa awak dan rudal-rudal jarak jauh.
Di laut, kapal-kapal juga senang menggunakan GPS karena alasan kemudahan penggunaannya. IMO (International Maritime Organization) bahkan menganjurkan pemakaian AIS (Automatic Identification System), yaitu alat penerima GPS yang secara periodik mengirimkan posisi kapal. GPS juga digunakan untuk mempelajari kebiasaan migrasi satwa laut.
Penerima GPS yang tersedia dalam berbagai bentuk dan ukuran membuat penggunaannya di darat juga beragam. Mulai dari penerima GPS handheld untuk perjalanan lintas alam seharga sekitar Rp 1 juta sampai penerima GPS untuk memantau perjalanan truk-truk kontainer dan kereta api. GPS juga digunakan membuat peta dan membantu bermain golf. Jam satelit GPS yang sangat presisi juga banyak dimanfaatkan, di antaranya sinkronisasi antar BTS/menara pada jaringan telepon seluler.
Beberapa tahun belakangan GPS bahkan dimanfaatkan juga di angkasa luar untuk mendapatkan posisi satelit lainnya. Akan tetapi, aplikasi yang paling kreatif menurut penulis adalah menggunakan GPS sebagai GPS. Sinyal GPS yang memantul dari suatu obyek digunakan untuk menghitung posisi obyek tersebut. GPS GPS lebih murah dari GPS biasa karena tidak perlu tenaga listrik besar untuk transmisi sinyal GPS dan untuk keperluan militer punya keuntungan tidak bisa diketahui posisinya dari transmisi sinyal GPS-karena GPS GPS tidak mentramisikan sinyal sendiri.


BAB 4
IMPLEMENTASI GPS

4.1. Kegunaan GPS
a)      Cuaca
Weather GPS, merupakan jenis GPS cuaca yang memiliki kemampuan untuk mendeteksi intensitas curah hujan dan cuaca buruk, misalnya badai.
Wind Profiler, merupakan jenis GPS cuaca yang berguna untuk mendeteksi kecepatan dan arah angin dengan menggunakan gelombang suara (SODAR).
b)        Militer
Airborne Early Warning (AEW), merupakan sebuah sistem GPS yang berfungsi untuk mendeteksi posisi dan keberadaan pesawat terbang lain. Sistem GPS ini biasanya dimanfaatkan untuk pertahanan dan penyerangan udara dalam dunia militer.
GPS pemandu peluru kendali, biasa digunakan oleh sejumlah pesawat tempur untuk mencapai sasaran/target penembakan. Salah satu pesawat yang menggunakan jenis GPS ini adalah pesawat tempur Amerika Serikat F-14. Dengan memasang GPS ini pada peluru kendali udara (AIM-54 Phoenix), maka peluru kendali yang ditembakkan ke udara itu (air-to-air missile) diharapkan dapat mencapai sasarannya dengan tepat.
c)      Kepolisian
GPS biasa dimanfaatkan oleh kepolisian untuk mendeteksi kecepatan kendaraan bermotor saat melaju di jalan. GPS yang biasa digunakan untuk masalah ini adalah GPS gun (GPS kecepatan) yang berbentuk seperti pistol dan microdigicam GPS.
d)     Pelayaran
Dalam bidang pelayaran, GPS digunakan untuk mengatur jalur perjalanan kapal agar setiap kapal dapat berjalan dan berlalu lalang di jalurnya masing-masing dan tidak saling bertabrakan, sekalipun dalam cuaca yang kurang baik, misalnya cuaca berkabut

e)      Penerbangan
Dalam bidang penerbangan, penggunaan GPS terlihat jelas pada pemakaian Air Traffic Control (ATC). Air Traffic Control merupakan suatu kendali dalam pengaturan lalu lintas udara. Tugasnya adalah untuk mengatur lalu lalang serta kelancaran lalu lintas udara bagi setiap pesawat terbang yang akan lepas landas (take off), terbang di udara, maupun yang akan mendarat (landing). ATC juga berfungsi untuk memberikan layanan bantuan informasi bagi pilot tentang cuaca, situasi dan kondisi bandara yang dituju



BAB 5
PENUTUP

5.1  Kesimpulan
Global Positioning System adalah alat yang digunakan untuk mengetahui posisi seseorang pada satu saat. Yang ditransmisikan GPS bukan informasi posisi kita tetapi posisi satelit dan jarak penerima GPS kita dari satelit. Informasi ini diolah alat penerima GPS kita dan hasilnya ditampilkan kepada kita.
GPS memiliki banyak fungsi yang bermanfaat bagi kehidupan kita, seperti melihat lokasi di mana kita berada, menunjukkan arah untuk ke lokasi yang ingin kita tuju, sebagai kompas, menunjukkan peta lokasi suatu tempat berupa gambar jalan dan sungai.
GPS bekerja dengan cara tiap satelit mentransmisikan data navigasi dalam sinyal CDMA (Code Division Multiple Access)-sama seperti jenis sinyal untuk telepon seluler CDMA. Sinyal CDMA menggunakan kode pada transmisinya sehingga penerima GPS tetap bisa mengenali sinyal navigasi GPS walaupun ada gangguan pada frekuensi yang sama. Kode CDMA tiap satelit dipilih dengan saksama agar tidak mengganggu transmisi satelit lainnya.
Satelit-satelit ini dikontrol dari 5 stasiun Bumi, 4 stasiun Bumi yang bekerja otomatis dan satu stasiun Bumi pengontrol utama. Empat stasiun Bumi otomatis hanya berfungsi menerima data dari satelit GPS dan meneruskan informasi itu ke stasiun pengontrol utama. Stasiun pengontrol utama memberikan koreksi data navigasi ke satelit-satelit GPS.
Bagian akhir dari sistem GPS ini adalah alat penerima GPS yang akhirnya menghitung semua data, melakukan korelasi, dan menampilkan data posisi di layar display.
Kita tidak bisa memakai GPS di tempat tertutup atau terhalang gedung-gedung tinggi karena alat GPS perlu melihat langsung satelit untuk menerima informasi. Dengan GPS Garmin bahasa  yang tersedia hanya bahasa-bahasa Eropa saja. Jenis baterai AA  dan jika baterai habis, tidak ada cadangan bantuan navigasi. Kelemahan alat GPS yaitu kesalahan untuk menghitung ketinggian cukup besar dan kurang cocok untuk membantu sebagai informasi navigasi di daerah pegunungan
Aplikasi GPS sangat beragam dan tidak terbatas pada hal-hal yang berhubungan dengan penentuan posisi saja. Dibandingkan dengan peralatan navigasi lain, penerima GPS paling mudah. GPS juga digunakan untuk GPS,membimbing pesawat tanpa awak dan rudal-rudal jarak jauh, mempelajari kebiasaan migrasi satwa laut, memantau perjalanan truk-truk kontainer dan kereta api. GPS juga digunakan membuat peta dan membantu bermain golf, mendapatkan posisi satelit lainnya.


DAFTAR PUSTAKA


Armando, Ade. Komunikasi Internasional, UT. Jakarta : 2007
Blagy, Shirley. Media Impact. An Introduction to Mass Media, Third Edition. Wadsworth Publishing Company, Belmont, California : 2000
Kuswandi, Wawan. Komunikasi Massa, Sebuah Analisis Media Televisi. Rineka Cipta. Jakarta : 1996
 http://info.g-excess.com/id/online/satelit-dan-orbitnya.info
http://www.wikipedia.com
 http://info.g-excess.com/id/online/satelit-dan-orbitnya.info